Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction

نویسندگان

  • Natalie Naue
  • Roman Fedorov
  • Andreas Pich
  • Dietmar J. Manstein
  • Ute Curth
چکیده

During DNA replication in Escherichia coli, single-stranded DNA-binding protein (SSB) protects single-stranded DNA from nuclease action and hairpin formation. It is known that the highly conserved C-terminus of SSB contacts the χ subunit of DNA polymerase III. However, there only exists a theoretical model in which the 11 C-terminal amino acids of SSB have been docked onto the surface of χ. In order to refine this model of SSB/χ interaction, we exchanged amino acids in χ and SSB by site-directed mutagenesis that are predicted to be of key importance. Detailed characterization of the interaction of these mutants by analytical ultracentrifugation shows that the interaction area is correctly predicted by the model; however, the SSB C-terminus binds in a different orientation to the χ surface. We show that evolutionary conserved residues of χ form a hydrophobic pocket to accommodate the ultimate two amino acids of SSB, P176 and F177. This pocket is surrounded by conserved basic residues, important for the SSB/χ interaction. Mass spectrometric analysis of χ protein cross-linked to a C-terminal peptide of SSB reveals that K132 of χ and D172 of SSB are in close contact. The proposed SSB-binding site resembles those described for RecQ and exonuclease I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein

During bacterial DNA replication, DnaG primase and the χ subunit of DNA polymerase III compete for binding to single-stranded DNA-binding protein (SSB), thus facilitating the switch between priming and elongation. SSB proteins play an essential role in DNA metabolism by protecting single-stranded DNA and by mediating several important protein-protein interactions. Although an interaction of SSB...

متن کامل

Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III α binding to ssDNA

Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA po...

متن کامل

Structure of the SSB-DNA polymerase III interface and its role in DNA replication.

Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymera...

متن کامل

Distinct Double- and Single-Stranded DNA Binding of E. coli Replicative DNA Polymerase III α Subunit

The alpha subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the alpha subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the alpha subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct...

متن کامل

DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery.

Single-stranded DNA binding (SSB) protein binds to single-stranded DNA (ssDNA) at the lagging strand of the replication fork in Escherichia coli cells. This protein is essential for the survival of the E.coli cell, presumably because it shields the ssDNA and holds it in a suitable conformation for replication by DNA polymerase III. In this study we undertook a biophysical analysis of the intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011